2.6. Напряженное и деформированное состояние при растяжении и сжатии

Рассмотрим более подробно особенности напряженного состоя­ния, возникающего в однородном растянутом стержне. Определим напряжения, возникающие на некоторой наклонной площадке, со­ставляющей угол a с плоскостью нормального сечения (рис. 2.6, а).

Рис. 2.6

Из условия åz = 0, записанного для отсеченной части стержня (рис. 2.6, б), получим:

рFa = sF, (2.17)

где F - площадь поперечного сечения стержня, Fa = F/cos a - пло­щадь наклонного сечения. Из (2.17) легко установить:

р = sсos a. (2.18)

Раскладывая напряжение р по нормали и касательной к на­клонной площадке (рис. 2.6, в), с учетом (2.18) получим:

sa = pcos a = scos2 a; ta = psin a = ssin 2 a . (2.19)

Полученные выражения показывают, что для одной и той же точки тела величины напряжений, возникающих в сечениях, про­ходящих через эту точку, зависят от ориентации этой площадки, т.е. от угла a. При a = 0 из (2.19) следует, что sa = s, ta = 0. При a = , т.е. на продольных площадках, sa = ta = 0. Это означает, что продольные слои растянутого стержня не взаимодействуют друг с другом. Касательные напряжения ta принимают наибольшие зна­чения при a = , и их величина составляет tmax= . Важно отме­тить, как это следует из (2.19), что . Следовательно, в любой точке тела на двух взаимно перпендикулярных площадках касательные напряже­ния равны между собой по абсолютной величине. Это условие является общей закономерностью любого напряженного состояния и носит назва­ние закона парности касательных напряжений.

Теперь перейдем к анализу деформаций в растянутом стержне. Наблюдения показывают, что его удлинение в продольном направ­лении сопровождается пропорциональным уменьшением попереч­ных размеров стержня (рис. 2.7).

Рис. 2.7

Если обозначить:

eпрод = ; eпопер = - , m = - ,

то, как показывают эксперименты, m = const для данного материала и является безразмерным коэффициентом Пуассона. Вели­чина m является важной характеристикой материала и определяется экспериментально. Для реальных материалов m принимает значе­ния 0,1 ¸ 0,45.

При растяжении стержня возникают не только линейные, но и угловые деформации.

Рассмотрим прямой угол АВС (рис. 2.8, а), образованный отрез­ками АВ и АС, в недеформированном состоянии.

Рис. 2.8

При растяжении стержня точки А, В и С займут положение А ¢, B ¢, C ¢ соответственно. Величина

ga = ÐВАС - ÐА ¢B ¢C ¢

называется угловой деформацией или угловым сдвигом в точке А.

Совместим точки А и А ¢ и рассмотрим взаимное расположение отрезков АВ и А ¢B ¢ (рис. 2.8, б). На этом рисунке отметим вспомо­гательные точки K и L и прямую n, перпендикулярную отрезку А ¢B ¢. Из рис. 2.8, б имеем:

eпрод = ; eпопер = ,

откуда с учетом eпрод = получим:

. (2.20)

Для определения wa спроектируем ломаную ВLB ¢А ¢ на ось n DS×sin wa = BL cos (a + wa) + LB ¢sin(a + wa), откуда, учитывая ма­лость угла wa , т.е. sin wa » wa , cos wa » 1, получим:

wa = . (2.21)

В результате совместного рассмотрения (2.20) и (2.21) получим:

wa = .

Откуда

.

Следовательно,

. (2.22)

Сопоставляя выражение ga с выражением ta из (2.17) окон­чательно получим закон Гука для сдвига:

(2.23)

где величина называется модулем сдвига или модулем упругости материала второго рода.