3.1. Статические моменты сечения

При решении практических задач возникает необходимость в использовании различных геометрических характеристик попереч­ных сечений бруса. Настоящий раздел посвящен методам их опре­деления. Рассмотрим некоторое поперечное сечение в системе ко­ординат x, y (рис. 3.1) и рассмотрим два следующих интегральных выражения:

(3.1)

где нижний индекс у знака интеграла указывает на то, что интегри­рование ведется по всей площади сечения F. Каждый из этих инте­гралов представляет собой сумму произведений элементарных пло­щадок dF на расстояние до соответствующей оси (x или y). Первый интеграл называется статическим моментом сечения относительно оси x, а второй - относительно оси y.

При выполнении практических расчетов важно знать, как меняются статические моменты сечения при параллельном переносе координатных осей (рис 3.2).

Очевидно, что

x = x1 + a; y = y1 + b. (3.2)

Подставляя (3.2) в (3.1) получим:

Рис. 3.1 Рис. 3.2

(3.3)

Величины а и b можно подобрать (причем единственным обра­зом) так, чтобы выполнялись следующие равенства:

b×F = Sx ; a×F = Sy , (3.4)

тогда статические моменты .

Ось, относительно которой статический момент равен нулю, называется центральной. Точка С(xC , yC) пересечения централь­ных осей называется центром тяжести сечения в системе координат (x, y) и определяется из (3.4):

. (3.5)

Далее предположим, что брус имеет составное сечение (рис. 3.3) с общей пло­щадью F. Обозначим через Fk (k = 1,2,3,...,n) площадь k-ой области, принадлежащей к составному сечению бруса. Тогда выраже­ние (3.1) можно преобразовать в следующем виде:

, (3.6)

где - статические моменты k-той области относительно осей x и y. Следовательно, статический момент составного сечения равен сумме статических моментов составляющих областей.