3.3. Главные оси и главные моменты инерции

Рассмотрим, как изменяются моменты инерции плоского сече­ния при повороте осей координат из положения x и y к положению u и v. Из рис. 3.5, б легко установить, что

u = ysina + xcosa; v = ycosa - xsina. (3.10)

Из выражений:

с учетом (3.10) после несложных преобразований получим:

(3.11)

Складывая первые два уравнения, получим:

Iu + Iv = Ix + Iy = Ir , (3.12)

где ; Ir - полярный момент инерции сечения, величи­на которого, как видно, не зависит от угла поворота координатных осей.

Дифференцируя в (3.11) выражение Iu по a и приравнивая его нулю, находим значение a = a0 , при котором функция Iu прини­мает экстремальное значение:

. (3.13)

С учетом (3.12) можно утверждать, что при a = a0 один из осе­вых моментов Iu или Iv будет наибольшим, а другой наименьшим. Одновременно при a = a0 Iuv обращается в нуль, что легко установить из третьей формулы (3.11).

Декартовы оси координат, относительно которых осевые мо­менты инерции принимают экстремальные значения, называются главными осями инерции. Осевые моменты инерции относи­тельно главных осей называются главными и определяются из (3.11) с учетом (3.13) и имеют вид:

. (3.14)

В заключение введем понятие радиуса инерции сечения относительно координатных осей x и y - ix и iy , соответственно, которые определяются по формулам: