4.2. Кручение бруса с некруглым поперечным сечением
Определение напряжений в брусе с некруглым поперечным сечением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипотеза плоских сечений, оказывается неприемлимой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.
Таким образом, при определении углов сдвига, в данном случае, необходимо учитывать не только взаимный поворот сечений, но и деформации сечений в своей плоскости, связанная с искривлением сечений.
Задача резко усложняется тем, что для некруглого сечения, напряжения должны определяться как функции уже не одного независимого переменного r, а двух - x и y.
Отметим некоторые особенности законов распределения напряжений в поперечных сечениях некруглой формы. Если поперечное сечение имеет внешние углы, то в них касательные напряжения должны обращаться в нуль. Если наружная поверхность бруса при кручении свободна, то касательные напряжения в поперечном сечении, направленные по нормали к контуру также будут равны нулю.
Рис. 4.3 |
На рис. 4.3 показана, полученная методом теории упругости, эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как видно, напряжения равны нулю, а наибольшие их значения возникают по серединам больших сторон:
в точке А tA= tmax = , (4.14)
где WК= bb3 - аналог полярного момента сопротивления поперечного сечения прямоугольного бруса;
в точке В tB= htmax , (4.15)
здесь необходимо учесть, что b-малая сторона прямоугольника.
Значения угла закручивания определяется по формуле:
, (4.16)
где IK = ab4 - аналог полярного момента инерции поперечного сечения бруса.
Коэффициенты a, b и h зависят от отношения сторон m = h/b, и их значения приведены в табл. 3.
Таблица 3
m | 1 | 1,5 | 2,0 | 3,0 | 6,0 | 10 |
a | 0,141 | 0,294 | 0,457 | 0,790 | 1,789 | 3,123 |
b | 0,208 | 0,346 | 0,493 | 0,801 | 1,789 | 3,123 |
h | 1,000 | 0,859 | 0,795 | 0,753 | 0,743 | 0,742 |
Геометрические характеристикинаиболее представительных форм сечений обобщены в табл. 4.
|