5.13. Теории прочности

Как показывают экспериментальные исследования, прочность материалов существенно зависит от вида напряженного состояния. В общем случае нагруженного тела напряженное состояние в ка­кой-либо точке вполне может быть определено величиной напря­жений в трех координатных плоскостях, проходящих через эту точку. При произвольном выборе положения координатных плос­костей, в каждой из них, вообще говоря, имеются и нормальные, и касательные напряжения. Для них вводятся соответствующие обо­значения в плоскости xy: szz , tzx , tzy ; в плоскости xz: syy , tyx , tyz; в плоскости yz: sxx , txy , txz . Здесь первый индекс показывает ориентацию площадки, в которой действует напряжение, т.е. какой из координатных осей она перпендикулярна. Второй индекс ука­зывает направление напряжения по координатной оси.

В каждой точке тела существуют три взаимно перпендикуляр­ные плоскости, свободные от касательных напряжений, носящие название главных площадок. Нормальные напряжения в этих пло­щадках называются главными напряжениями и обозначаются s1, s2, s3. При этом всегда s1 > s2 > s3. Заметим, что более подробно вопросы теории напряженного состояния в точке обсуждены в десятом разделе настоящей книги, и по данному вопросу имеется обширная литература.

Напряженные состояния разделяются на три группы. Напря­женное состояние называется: а) объемным или трехосным, если все главные напряжения s1, s2, s3 не равны нулю; б) плос­ким или двухосным, если одно из трех главных напряжений равно нулю; в) одномерным или одноосным, если два из трех главных напряжений равны нулю.

Основной задачей теории прочности является установление критерия прочности, позволяющего сравнить между собой опас­ность различных напряженных состояний материала.

Выбранный критерий прочности должен быть обоснован на основе экспериментальных данных путем проведения испытаний различных материалов в зависимости от вида напряженного сос­тояния, как функция от соотношений между значениями главных напряжений.

Заметим, что, так как в настоящее время строгой единой тео­рии прочности материалов, в зависимости от вида напряженного состояния, не существует, поэтому при выполнении практических расчетов применяются упрощенные критерии.

Как отмечалось в п. 2.8, наиболее распространенным и наглядным критерием проверки конструкций на прочность, при простейших случаях напряженного состояния (сжатие-растяжение, кручение, чистый изгиб), является выполнение условия:

smax £ [s], (5.38)

где smax - максимальное расчетное значение напряжения, возника­ющее в наиболее опасной точке конструкции; [s] - допускаемое значение напряжения для материала конструкции.

В настоящее время при выполнении расчетов конструкций на прочность, при произвольных напряженных состояниях, широко используются три теории прочности.

Согласно первой теории критерием прочности является ограничение главного максимального напряжения:

smax = s1 £ [s], (5.39)

где [s] - предельное напряжение, полученное из опытов на одно­осное растяжение.

Основным недостатком этой теории является не учет двух других главных напряжений.

В основу второй теории прочности заложена гипотеза о том, что критерием оценки работы конструкции является ограни­чение наибольшего удлинения. В формулировке данного положе­ния через главные напряжения (s1 и s2 ) это условие для плоского на­пряженного состояния записывается следующим образом:

s1 - ms2 £ [s],

где [s] - напряжение, при котором было вызвано предельное уд­линение образца в опытах на одноосное растяжение; m - коэф­фициент бокового расширения.

При объемном напряженном состоянии вторая теория проч­ности записывается в виде:

s1 - m(s2 -s3) £ [s], (5.40)

Экспериментальная проверка не всегда подтверждает правиль­ность теории прочности наибольших линейных деформаций при простых нагружениях, т.е. при чистом растяжении или чистом сдвиге. Однако до настоящего времени эта теория имела широкое применение при выполнении инженерных расчетов..

В основу третьей теории прочности заложена гипотеза о том, что причиной разрушения материалов являются сдвиговые деформации, происходящие на площадках максимальных касатель­ных напряжений, т.е.

tmax < [t], (5.41)

где tmax - расчетное максимальное касательное напряжение, возни­кающее в опасной точке нагруженного тела; [t] - предельное зна­чение касательного напряжения, полученное из опытов.

Для плоского напряженного состояния по третьей теории усло­вие прочности записывается в виде:

s1 - s2 < [s]. (5.42)

В случае поперечного изгиба балки (s2 = 0), если выразить главные напряжения s1 и s3 через s и t, то условие прочности (5.42) преобразуется в виде:

, (5.43)

где R - расчетное сопротивление материала балки при изгибе.