6.2. Определение перемещений методом Мора
Суть метод Мора в следующем. Если необходимо определить перемещение в заданной точке по заданному направлению, то наряду с заданной системой внешних сил в этой точке прикладывается внешнее усилие Ф = 1 в интересующим нас направлении.
Далее составляется выражение потенциальной энергии системы, состоящей из n участков с учетом одновременного действия заданной системы внешних сил и силы Ф:
(6.1)
,
где Кх , Ку - безразмерные величины, зависящие от геометрической формы сечения и учитывают неравномерность распределения касательных напряжений в сечении при поперечном изгибе. Так, например, для прямоугольника Кх = Ку = 1,2, а для двутавра при изгибе в плоскости его стенки K = F/FCT, где F - площадь всего сечения двутавра, FCT - площадь стенки; Nz, Qx, Qy , Mz, Mx, My - внутренние силовые факторы, возникающие в поперечных сечениях заданной стержневой системы; -внутренние силовые факторы, возникающие в поперечных сечениях заданной системы, от действия усилия Ф = 1.
Дифференцируя выражение (6.1) по Ф, и полагая после этого Ф = 0, находим искомое перемещение в искомой точке в нужном направлении.
. (6.2)
Полученные интегралы называются интегралами Мора и широко применяются при вычислении перемещений стержневых систем.
Для систем, элементы которых работают на растяжение или сжатие (например, шарнирно-стержневые системы - фермы), в формуле Мора (6.2) отличен от нуля будет только слагаемое, содержащее продольные силы. При расчете балок или рамных систем, работающих в основном на изгиб, влияние поперечной и продольной силы на перемещение несущественно и в большинстве случаев их влияние не учитывается. В случае пространственной работы стержня или стержневой системы, элементы которой работают, в основном, на изгиб и кручение, в формуле Мора обычно ограничиваются рассмотрением слагаемых, содержащих изгибающие и крутящие моменты.
Подробно рассмотрим случай, когда брус работает только на изгиб (Mx ¹ 0, Nz = Mz = My = Qx = Qy = 0). В этой ситуации выражение (6.2) принимает вид:
. (6.3)
Согласно (6.3) для определения перемещения произвольной точки в произвольном направлении, последовательно необходимо выполнять следующее:
1. Построить эпюру моментов Мx от заданной системы внешних сил;
2. Исключая внешние силы и в точке, где необходимо определить перемещение по заданному направлению, прикладывается единичное усилие (сила - если требуется определить линейное перемещение; момент - если требуется определить угловое перемещение), и от действия единичного усилия строится эпюра моментов ;
3. По формуле Мора (6.3) вычисляется искомое перемещение.
Рис. 6.6 |
Если принять EI = const, то перемещение в некоторой точке стержня определяется как интеграл от произведения двух функций моментов - Мx и . В общем виде интеграл Мора можно выразить следующей формулой:
. (6.4)
Часто встречаются случаи, когда на участке стержня длиной l необходимо вычислить интеграл Мора при условии, что по крайней мере одна из функций - линейная (рис. 6.6). Пусть f2 = b + kz, тогда из (6.4) получим :
(6.5)
где W1 - площадь эпюры f1 ; f2 (zC) - ордината линейной эпюры под центром тяжести криволинейной эпюры (рис. 6.6).
Приведенное решение носит имя русского ученого Верещагина, впервые его получившего. Таким образом, по способу Верещагина операция интегрирования выражения (6.4) в случае линейности хотя бы одной из подынтегральных функций существенно упрощается и сводится к перемножению площади криволинейной эпюры на ординату второй (линейной) функции под центром тяжести криволинейной.
Используя способ Верещагина, приведем результаты вычисления интегралов Мора для двух наиболее часто встречающихся случаев:
1. Обе функции f1 и f2 - линейные (рис. 6.7), тогда
; (6.6)
2. Функция f1 - квадратная парабола, f2 - линейная функция (рис. 6.8). Такая ситуация встречается, когда на участке длиной l приложена равномерно распределенная нагрузка q, тогда
, (6.7)
где f - “стрелка” квадратной параболы (рис. 6.8), .
В общем случае, если площадь W эпюры моментов имеет сложную геометрию и представляется возможным ее разбить на площади Wk (k = 1,2,3,...), имеющие элементарную геометрию, то интеграл Мора I от произведения эпюры W на эпюру моментов M, может быть представлен в виде:
. (6.8)
Для расчета усилий в статически неопределимых стержневых системах существуют различные методы. Здесь рассмотрим
метод сил.
|