9.3. Запас усталостной прочности и его определение
Сначала построим диаграмму усталостной прочности (часто, для простоты рассуждений предельную линию представляют в виде прямой) и покажем на ней рабочую точку М цикла (с координатами sm и sа) в случае, если рассматриваемый элемент испытывает только простое растяжение и сжатие (рис. 9.7).
Рассмотрим все те циклы, рабочие точки которых лежат на одной прямой (рис. 9.7) и для которых справедливо выражение sа = = sm tga. С учетом (9.1) и после несложных преобразований можно получить, что:
.
где R - коэффициент асимметрии цикла.
Значит, можно сделать вывод о том, что все подобные циклы лежат на одной прямой. Тогда, под запасом усталостной прочности будем понимать отношение отрезка ON к отрезку OM (рис. 9.7):
, (9.6)
где точка M соответствует действующему циклу, а точка N получается вследствие пересечения предельной прямой и продолжения отрезка OM (рис. 9.7).
Это отношение характеризует степень близости рабочих условий к предельным для данного материала. В частном случае при постоянных статических нагрузках sа = 0, данное определение запаса прочности совпадает с обычным.
Рис. 9.7 |
Для определения (т.е. в ситуации когда действуют лишь нормальные напряжения) в инженерной практике применяется как графический, так и аналитический способ. При графическом способе строго по масштабу строится диаграмма предельных напряжений в системе координат sа и sm. Далее, на этой диаграмме наносится рабочая точка и определяется отношение величин отрезка ON и OM. Для определения расчетных зависимостей для воспользуемся условием подобия треугольников OND и OMK и получим:
. (9.7)
Полученный коэффициент запаса соответствует идеальному образцу. Реальная же его величина зависит, как отмечалось выше, от геометрии, размеров и состояния поверхности образца, учитываемых коэффициентами К-1, es и b, соответственно. Для этого необходимо предел усталости при симметричном нагружении уменьшить в раз, или, что тоже самое, амплитудное напряжение цикла увеличить в раз. И тогда (9.7) принимает вид:
, (9.8)
где
. (9.9)
Аналогичным образом могут быть получены соотношения усталостной прочности и при чистом сдвиге. Эксперименты показывают, что диаграмма усталостной прочности для сдвига заметно отличается от прямой линии, свойственной простому растяжению-сжатию, и имеет вид кривой. В первом приближении эту кривую в координатных осях ta, tm можно представить в виде двух наклонных, как это изображено на рис. 9.8. Причем, если одна из них (ближняя к оси ординат) соответствует разрушению образца вследствие усталостных явлений, то другая - по причине наступления пластического состояния.
Рис. 9.8
В данном случае расчетная формула для записывается в виде
, (9.10)
где - эмпирическая величина, определенная на основе обработки экспериментальных данных.
При сложном напряженном состоянии, т.е. если в рабочей точке при действии внешних нагрузок одновременно возникают как нормальные, так и касательные напряжения, для вычисления nR применяется следующая приближенная формула:
, (9.11)
где nR - искомый коэффициент запаса усталостной прочности; - коэффициент запаса усталостной прочности в предположении, что касательные напряжения в рабочей точке отсутствуют; - коэффициент запаса прочности по усталости при предположении, что в рабочей точке нормальные напряжения отсутствуют.
Резюмируя заметим, как это было показано в настоящем разделе книги, в настоящее время в связи с тем, что физические основы теории твердого деформируемого тела недостаточно развиты, многие предпосылки современной теории усталостной прочности базируются на эмпирической основе. Отсутствие твердых предпосылок в теории выносливости, в современном виде лишает ее нужной строгости. Так как полученные эмпирические зависимости не являются универсальными, сами результаты расчетов являются достаточно приближенными. Однако указанные приближения оказываются допустимыми для решения инженерных задач.
|