Условное математическое ожидание
Определение. Условным математическим ожиданием дискретной случайной величины Y при X = x (х – определенное возможное значение Х) называется произведение всех возможных значений Y на их условные вероятности.
Для непрерывных случайных величин:
,
где f(y/x) – условная плотность случайной величины Y при X=x.
Условное математическое ожидание M(Y/x)=f(x) является функцией от х и называется функцией регрессии Х на Y.
Пример. Найти условное математическое ожидание составляющей Y при
X= x1=1 для дискретной двумерной случайной величины, заданной таблицей:
Y | X |
x1=1 | x2=3 | x3=4 | x4=8 |
y1=3 | 0,15 | 0,06 | 0,25 | 0,04 |
y2=6 | 0,30 | 0,10 | 0,03 | 0,07 |
Аналогично определяются условная дисперсия и условные моменты системы случайных величин.
|