5.4. Понятие об уравновешивающей силе. Теорема Жуковского о жестком рычаге

Одним из способов определения приведенной силы Fпр является способ, предложенный проф. Н.Е. Жуковским. Уравнение, из которого может быть найдена Fпр, основано на равенстве мощностей: Fпр·VA·cos(Fпр VA)=∑Fi·Vi·cos(Fi Vi).


Рассмотрим какое-либо звено механизма, в т. В которого приложена сила Fi под углом αi к вектору скорости Vi этой точки (рис.25, а).

Мощность силы Fi равна:

Pi=Fi·Vi·cosαi.

Если вектор скорости т. В (план скоростей) повернуть на

Рис. 25 90˚ и силу Fi приложить к концу вектора (в т. «b»), сохранив ее направление, то момент этой силы относительно полюса «p» будет равен (рис.25, б): Mi=Fi·hi=Fi·Vi·cosαi=Pi,

т.е. равен мощности силы Fi. Таким образом, Fi можно найти, повернув на 90˚ план скоростей и приложив к нему все внешние силы, включая силы инерции, в соответствующих точках и сохраняя их направления. Тогда из уравнения моментов такого рычага:

Fпр·hпр=∑Fi·hi, получим: Fпр=∑Fi·hi/hпр, где hi и hпр – кратчайшие расстояния от полюса плана скоростей до линии действия i-ой и приведенной сил.

Повернутый на 90˚ план скоростей с приложенными к нему силами называется жестким рычагом Жуковского.

Величина Fпр или Мпр зависит от положения механизма, поэтому можно построить диаграмму, например, Fпр(φ), являющуюся функцией положения звена приведения. Для этого необходимо последовательно определить значения Fпр методом рычага Жуковского для целого ряда положений механизма в пределах цикла (F1пр, F2пр,…) и отложить их на диаграмме (рис.26).

Приведенная сила Fпр или момент Мпр характеризует реакцию механизма на движение его входного звена по определенному закону, задаваемому двигателем. Сила или момент, равные по величине приведенной силе или моменту, но противоположные им по направлению называется уравновешенной силой Fур или моментом Мур. Эта сила или момент развивается двигателем и обеспечивает заданное движение входного звена.

Если к рычагу Жуковского приложить все внешние силы, включая силы инерции, а также Fур, то его можно рассматривать в равновесии, из условия которого: Fур·hур+∑Fi·hi=0 можно определить неизвестную Fур, а также найти мощность двигателя Pдв, требуемую для получения заданного движения входного звена в заданном положении:

Pдв=Fур·VA·cos(FурVA)=Mур·ω.