Математика » Высшая алгебра » Скалярное произведение векторов

Скалярное произведение векторов

Определение. Скалярным произведением векторов и называется число, равное произведению длин этих сторон на косинус угла между ними.

× = ï ïï ïcosj

Свойства скалярного произведения:

1) × = ï ï2;

2) × = 0, если ^ или = 0 или = 0.

3) × = × ;

4) ×( + ) = × + × ;

5) (m )× = ×(m ) = m( × ); m=const

Если рассматривать векторы в декартовой прямоугольной системе координат, то

× = xa xb + ya yb + za zb;

Используя полученные равенства, получаем формулу для вычисления угла между векторами:

Пример. Найти (5 + 3 )(2 - ), если

10 × - 5 × + 6 × - 3 × = 10 ,

т.к. .

Пример. Найти угол между векторами и , если

.

Т.е. = (1, 2, 3), = (6, 4, -2)

× = 6 + 8 – 6 = 8:

.

cosj =

Пример. Найти скалярное произведение (3 - 2 )×(5 - 6 ), если

15 × - 18 × - 10 × + 12 × = 15

+ 12×36 = 240 – 336 + 432 = 672 – 336 = 336.

Пример. Найти угол между векторами и , если

.

Т.е. = (3, 4, 5), = (4, 5, -3)

× = 12 + 20 - 15 =17 :

.

cosj =

Пример. При каком m векторы и перпендикулярны.

= (m, 1, 0); = (3, -3, -4)

.

Пример. Найти скалярное произведение векторов и , если

( )( ) =

= 10 +

+ 27 + 51 + 135 + 72 + 252 = 547.