Уравнение прямой по точке и направляющему вектору

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор (a1, a2), компоненты которого удовлетворяют условию Аa1 + Вa2 = 0 называется направляющим вектором прямой

Ах + Ву + С = 0.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением, коэффициенты должны удовлетворять условиям:

1×A + (-1)×B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C/A = 0.

при х = 1, у = 2 получаем С/A = -3, т.е. искомое уравнение:

х + у - 3 = 0