Матрицы линейных преобразований
Пусть в n- мерном линейном пространстве с базисом , ,…, задано линейное преобразование А. Тогда векторы А ,А ,…,А - также векторы этого пространства и их можно представить в виде линейной комбинации векторов базиса:
A = a11 + a21 +…+ an1
A = a12 + a22 +…+ an2
……………………………….
A = an1 + an2 +…+ ann
Тогда матрица А = называется матрицей линейного преобразования А.
Если в пространстве L взять вектор = x1 + x2 +…+ xn , то A Î L.
, где
……………………………..
Эти равенства можно назвать линейным преобразованием в базисе , ,…, .
В матричном виде:
, А× ,
Пример. Найти матрицу линейного преобразования, заданного в виде:
x¢ = x + y
y¢ = y + z
z¢ = z + x
x¢ = 1×x + 1×y + 0×z
y¢ = 0×x + 1×y + 1×z
z¢ = 1×x + 0×y + 1×z
A =
На практике действия над линейными преобразованиями сводятся к действиям над их матрицами.
Определение: Если вектор переводится в вектор линейным преобразованием с матрицей А, а вектор в вектор линейным преобразованием с матрицей В, то последовательное применение этих преобразований равносильно линейному преобразованию, переводящему вектор в вектор (оно называется произведением составляющих преобразований).
С = В×А
Пример. Задано линейное преобразование А, переводящее вектор в вектор и линейное преобразование В, переводящее вектор в вектор . Найти матрицу линейного преобразования, переводящего вектор в вектор .
С = В×А
Т.е.
Примечание: Если ïАï= 0, то преобразование вырожденное, т.е., например, плоскость преобразуется не в целую плоскость, а в прямую.
|